
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 20 – Recursion (Continued)

Prof. Jeremy Dixon

Based on slides from UPenn’s CIS 110, and from previous iterations of the course

www.umbc.edu

Last Class We Covered
• Stacks
• Recursion

– Recursion
• Recursion

• Parts of a recursive function:
– Base case: when to stop
– Recursive case: when to go (again)

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives
• To gain a more solid understanding of recursion
• To explore what goes on “behind the scenes”
• To examine individual examples of recursion

– Binary Search
– Hailstone problem (Collatz)
– Fibonacci Sequence

• To better understand when it is best to use
recursion, and when it is best to use iteration

www.umbc.edu

Review of Recursion

www.umbc.edu

What is Recursion?
• Solving a problem using recursion means the

solution depends on solutions to smaller
instances of the same problem

• In other words, to define a function or
calculate a number by the repeated
application of an algorithm

www.umbc.edu

Recursive Procedures
• When creating a recursive procedure, there

are a few things we want to keep in mind:
– We need to break the problem into

smaller pieces of itself
– We need to define a “base case” to stop at
– The smaller problems we break down into

need to eventually reach the base case

www.umbc.edu

“Cases” in Recursion
• A recursive function must have two things:

• At least one base case
– When a result is returned (or the function ends)
– “When to stop”

• At least one recursive case
– When the function is called again with new inputs
– “When to go (again)”

www.umbc.edu

Code Tracing: Recursion

www.umbc.edu

Stacks and Tracing
• Stacks will help us track what we are doing

when tracing through recursive code

• Remember, stacks are LIFO data structures
– Last In, First Out

• We’ll be doing a recursive trace of
the summation function

www.umbc.edu

Summation Function
• The addition of a sequence of numbers
• The summation of a number is that number

plus all of the numbers less than it (down to 0)
– Summation of 5: 5 + 4 + 3 + 2 + 1
– Summation of 6: 6 + 5 + 4 + 3 + 2 + 1

• What would a recursive implementation look
like? What’s the base case? Recursive case?

www.umbc.edu

Summation Function

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

Base case:
Don’t want to go below 0
Summation of 0 is 0

Recursive case:
Otherwise, summation is
num + summation(num-1)

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

fact(0)

fact(1)

fact(2)

fact(3)

fact(4)

main()

STACK

main()

def main():
summ(4)

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

STACK

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num = 4

num: 4

STACK

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

num = 4
This is a local variable.
Each time the summ()

function is called, the new
instance gets its own

unique local variables.

STACK

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

num = 4

STACK

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

STACK

summ(2)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num = 1

num: 1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 0

return 0

return 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

POP!

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num: 1

return 1 + 0 (= 1)

return 1
num = 1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()

POP!

POP!

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 2
num = 2

num = 4

return 2 + 1 (= 3)

return 3

STACK

summ(2)

summ(3)

summ(4)

main()

POP!

POP!

POP!

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num: 3

num = 3

num = 4

return 3 + 3 (= 6)

return 6

STACK

summ(3)

summ(4)

main()

POP!

POP!

POP!

POP!

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num: 4

num = 4

return 4 + 6 (=10)

return 10

STACK

summ(4)

main()

POP!

POP!

POP!

POP!

POP!

www.umbc.edu

STACK

main()

main()

def main():
summ(4)

POP!

POP!

POP!

return None

return None

POP!

POP!

POP!

www.umbc.edu

STACK

POP!

POP!

POP!

return control

POP!

POP!

POP!

The stack is empty!

www.umbc.edu

Returning and Recursion

www.umbc.edu

Returning Values
• If your goal is to return a final value

– Every recursive call must return a value
– You must be able to pass it “back up” to main()
– In most cases, the base case should return as well

• Must pay attention to what happens at the
“end” of a function.

www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

main()

def main():
summ(4)

num: 4

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num: 3

num = 3

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num: 2num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num: 1

num = 0

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num: 0

num = 1

Does this work? What’s wrong? STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

www.umbc.edu

Hailstone Example

www.umbc.edu

The Hailstone Problem
• Included as part of the

“Nested and While Loops”
homework assignment

• The problem is actually
known as the “Collatz
Conjecture”

comic courtesy of xkcd.com

www.umbc.edu

Rules of the Collatz Conjecture
• Three rules to govern how it behaves

– If the current height is 1, quit the program
– If the current height is even, cut it in half (divide by 2)
– If the current height is odd, multiply it by 3, then add 1

• This process has also been called HOTPO
– Half Or Triple Plus One

www.umbc.edu

Implementation
• In your homework, you implemented this

process using a while loop

• Can you think of another way to implement it?
• Recursively!

www.umbc.edu

Designing our Recursive Function
• What is our base case?

– When the Height is 1

• What is our recursive case?
– We have two! What are they?

– Height is even: divide by 2
– Height is odd: multiply by 3 and add 1

www.umbc.edu

Exercise
• Create a function hail() that takes in a

number and prints out the height of the
hailstone at each point in time

• Important considerations:
– What do we check first? Base or recursive case?
– Is this function returning anything? Why or why not?

www.umbc.edu

Exercise Details
• Rules for function behavior

– If the current height is 1, quit the program
– If the current height is even, cut it in half (divide by 2)
– If the current height is odd, multiply it by 3, then add 1

• Create a function hail() that
– Takes in a number
– Prints out the height of the hailstone each time

www.umbc.edu

Binary Search

www.umbc.edu

Searching
• Given a list of sorted elements (e.g., words),

find a specific word as quickly as possible

• We could start from the beginning and iterate
through the list until we find it
– But that could take a long time!

www.umbc.edu

Binary Search
• Uses a “divide and conquer” approach

• Go to the middle, and compare the element
there to the one we’re looking for
– If it’s larger, we know it’s not in the last half
– If it’s smaller, we know it’s not in the first half

– If it’s the same, we found it!

www.umbc.edu

Binary Search Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find "J"

A B C D E F G H I J K L M N O P Q R S T U V W X

www.umbc.edu

Binary Search Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find “V"

A B C D E F G H I J K L M N O P Q R S T U V W X

www.umbc.edu

Binary Search
• Can be implemented using a while loop

– But much more common to use recursion

• What is the base case?
• What is the recursive case?

www.umbc.edu

Recursion vs Iteration

www.umbc.edu

Recursion and Iteration
• Both are important

– All modern programming languages support them
– Some problems are easy using one and difficult

using the other

• How do you decide which to use?

www.umbc.edu

Use Iteration When…
• Speed and efficiency is an issue
• The problem is an obvious fit for iteration

– Processing every element of a list (or 2D list)

www.umbc.edu

Use Recursion When…
• Speed is not an issue
• The data being processed is recursive

– A hierarchical data structure

• A recursive algorithm is obvious
• Clarity and simplicity of code is important

www.umbc.edu

Fibonacci Sequences

www.umbc.edu

Fibonacci Sequence
• Number series
• Starts with 0 or 1

• Next number is found by adding the previous
two numbers together

• Pattern is repeated over and over (and over…)

www.umbc.edu

Fibonacci Sequence
• Starts with 0, 1, 1
• Next number is …?

0 51 1 2 3 8 13 21 34 55

89 144 233 377 610 …987

www.umbc.edu

Recursively Implement Fibonacci
• The formula for a number in the sequence:
F(n) = F(n-1) + F(n-2)

• What is our base case?
• What is our recursive case?

• How would we code this up?

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• Lab is back in session this week!

– Lab 11 is on classes

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Dictionaries

	CMSC201� Computer Science I for Majors��Lecture 20 – Recursion (Continued)
	Last Class We Covered
	Any Questions from Last Time?
	Today’s Objectives
	Review of Recursion
	What is Recursion?
	Recursive Procedures
	“Cases” in Recursion
	Code Tracing: Recursion
	Stacks and Tracing
	Summation Function
	Summation Function
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Returning and Recursion
	Returning Values
	Slide Number 31
	Hailstone Example
	The Hailstone Problem
	Rules of the Collatz Conjecture
	Implementation
	Designing our Recursive Function
	Exercise
	Exercise Details
	Binary Search
	Searching
	Binary Search
	Binary Search Example
	Binary Search Example
	Binary Search
	Recursion vs Iteration
	Recursion and Iteration
	Use Iteration When…
	Use Recursion When…
	Fibonacci Sequences
	Fibonacci Sequence
	Fibonacci Sequence
	Recursively Implement Fibonacci
	Any Other Questions?
	Announcements

