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Based on slides from UPenn’s CIS 110, and from previous iterations of the course
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Last Class We Covered
• Stacks
• Recursion

– Recursion
• Recursion

• Parts of a recursive function:
– Base case: when to stop
– Recursive case: when to go (again)
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Any Questions from Last Time?
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Today’s Objectives
• To gain a more solid understanding of recursion
• To explore what goes on “behind the scenes”
• To examine individual examples of recursion

– Binary Search
– Hailstone problem (Collatz)
– Fibonacci Sequence

• To better understand when it is best to use 
recursion, and when it is best to use iteration
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Review of Recursion



www.umbc.edu

What is Recursion?
• Solving a problem using recursion means the 

solution depends on solutions to smaller 
instances of the same problem

• In other words, to define a function or 
calculate a number by the repeated 
application of an algorithm
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Recursive Procedures
• When creating a recursive procedure, there 

are a few things we want to keep in mind:
– We need to break the problem into 

smaller pieces of itself
– We need to define a “base case” to stop at
– The smaller problems we break down into 

need to eventually reach the base case
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“Cases” in Recursion
• A recursive function must have two things:

• At least one base case
– When a result is returned (or the function ends)
– “When to stop”

• At least one recursive case
– When the function is called again with new inputs
– “When to go (again)”
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Code Tracing: Recursion
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Stacks and Tracing
• Stacks will help us track what we are doing 

when tracing through recursive code

• Remember, stacks are LIFO data structures
– Last In, First Out

• We’ll be doing a recursive trace of 
the summation function
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Summation Function
• The addition of a sequence of numbers
• The summation of a number is that number 

plus all of the numbers less than it (down to 0)
– Summation of 5: 5 + 4 + 3 + 2 + 1
– Summation of 6: 6 + 5 + 4 + 3 + 2 + 1

• What would a recursive implementation look 
like?  What’s the base case?  Recursive case?
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Summation Function

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

Base case:
Don’t want to go below 0
Summation of 0 is 0

Recursive case:
Otherwise, summation is 
num + summation(num-1)
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

fact(0)

fact(1)

fact(2)

fact(3)

fact(4)

main()

STACK

main()

def main():
summ(4)
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

STACK

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num = 4

num:  4

STACK

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

num = 4
This is a local variable.  
Each time the summ()

function is called, the new 
instance gets its own 

unique local variables.

STACK

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

num = 4

STACK

summ(3)

summ(4)

main()



www.umbc.edu

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

STACK

summ(2)

summ(3)

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num = 1

num:  1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  1

num = 0

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  0

return 0

return 0

num = 1

STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()

POP!
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
return num +
summ(num-1)

num:  1

return 1 + 0 (= 1)

return 1
num = 1

STACK

summ(2)

summ(1)

summ(3)

summ(4)

main()

POP!

POP!
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  2
num = 2

num = 4

return 2 + 1 (= 3)

return 3

STACK

summ(2)

summ(3)

summ(4)

main()

POP!

POP!

POP!
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

num:  3

num = 3

num = 4

return 3 + 3 (= 6)

return 6

STACK

summ(3)

summ(4)

main()

POP!

POP!

POP!

POP!
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def summ(num):
if num == 0:
return 0

else:
return num + summ(num-1)

main()

def main():
summ(4)

num:  4

num = 4

return 4 + 6 (=10)

return 10

STACK

summ(4)

main()

POP!

POP!

POP!

POP!

POP!
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STACK

main()

main()

def main():
summ(4)

POP!

POP!

POP!

return None

return None

POP!

POP!

POP!
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STACK

POP!

POP!

POP!

return control

POP!

POP!

POP!

The stack is empty!
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Returning and Recursion
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Returning Values
• If your goal is to return a final value

– Every recursive call must return a value
– You must be able to pass it “back up” to main()
– In most cases, the base case should return as well

• Must pay attention to what happens at the 
“end” of a function.
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def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

main()

def main():
summ(4)

num:  4

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num:  3

num = 3

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num:  2num = 2

num = 4

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num:  1

num = 0

def summ(num):
if num == 0:
return 0

else:
num + summ(num-1)

num:  0

num = 1

Does this work?  What’s wrong? STACK

summ(2)

summ(1)

summ(0)

summ(3)

summ(4)

main()
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Hailstone Example
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The Hailstone Problem
• Included as part of the 

“Nested and While Loops” 
homework assignment

• The problem is actually 
known as the “Collatz
Conjecture”

comic courtesy of xkcd.com
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Rules of the Collatz Conjecture
• Three rules to govern how it behaves

– If the current height is 1, quit the program
– If the current height is even, cut it in half (divide by 2)
– If the current height is odd, multiply it by 3, then add 1

• This process has also been called HOTPO
– Half Or Triple Plus One
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Implementation
• In your homework, you implemented this 

process using a while loop

• Can you think of another way to implement it?
• Recursively!
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Designing our Recursive Function
• What is our base case?

– When the Height is 1

• What is our recursive case?
– We have two!  What are they?

– Height is even: divide by 2
– Height is odd: multiply by 3 and add 1



www.umbc.edu

Exercise
• Create a function hail() that takes in a 

number and prints out the height of the 
hailstone at each point in time

• Important considerations:
– What do we check first? Base or recursive case?
– Is this function returning anything?  Why or why not?
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Exercise Details
• Rules for function behavior

– If the current height is 1, quit the program
– If the current height is even, cut it in half (divide by 2)
– If the current height is odd, multiply it by 3, then add 1

• Create a function hail() that
– Takes in a number
– Prints out the height of the hailstone each time



www.umbc.edu

Binary Search
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Searching
• Given a list of sorted elements (e.g., words), 

find a specific word as quickly as possible

• We could start from the beginning and iterate 
through the list until we find it
– But that could take a long time!
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Binary Search
• Uses a “divide and conquer” approach

• Go to the middle, and compare the element 
there to the one we’re looking for
– If it’s larger, we know it’s not in the last half
– If it’s smaller, we know it’s not in the first half

– If it’s the same, we found it!
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Binary Search Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find "J"

A B C D E F G H I J K L M N O P Q R S T U V W X
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Binary Search Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Find “V"

A B C D E F G H I J K L M N O P Q R S T U V W X
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Binary Search
• Can be implemented using a while loop

– But much more common to use recursion

• What is the base case?
• What is the recursive case?
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Recursion vs Iteration
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Recursion and Iteration
• Both are important

– All modern programming languages support them
– Some problems are easy using one and difficult 

using the other

• How do you decide which to use?
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Use Iteration When…
• Speed and efficiency is an issue
• The problem is an obvious fit for iteration

– Processing every element of a list (or 2D list)
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Use Recursion When…
• Speed is not an issue
• The data being processed is recursive

– A hierarchical data structure

• A recursive algorithm is obvious
• Clarity and simplicity of code is important
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Fibonacci Sequences
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Fibonacci Sequence
• Number series
• Starts with 0 or 1

• Next number is found by adding the previous 
two numbers together

• Pattern is repeated over and over (and over…)
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Fibonacci Sequence
• Starts with 0, 1, 1
• Next number is …?

0 51 1 2 3 8 13 21 34 55

89 144 233 377 610 …987
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Recursively Implement Fibonacci
• The formula for a number in the sequence:
F(n) = F(n-1) + F(n-2)

• What is our base case?
• What is our recursive case?

• How would we code this up?
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Any Other Questions?
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Announcements
• Lab is back in session this week!

– Lab 11 is on classes

• Project 1 is out
– Due by Tuesday, November 17th at 8:59:59 PM
– Do NOT procrastinate!

• Next Class: Dictionaries
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